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SUMMARY

Laser desorption/ionization-mass spectrometry (LDI-MS) is introduced as a com-
plementary technique for the analysis of interphases formed at electrode|electro-
lyte interfaces in lithium ion batteries (LIBs). An understanding of these inter-
phases is crucial for designing interphase-forming electrolyte formulations and
increasing battery lifetime. Especially organic species are analyzed more effec-
tively using LDI-MS than with established methodologies. The combination with
trapped ion mobility spectrometry and tandem mass spectrometry yields addi-
tional structural information of interphase components. Furthermore, LDI-MS im-
aging reveals the lateral distribution of compounds on the electrode surface. Us-
ing the introduced methods, a deeper understanding of the mechanism of action
of the established solid electrolyte interphase-forming electrolyte additive 3,4-
dimethyloxazolidine-2,5-dione (Ala-N-CA) for silicon/graphite anodes is ob-
tained, and active electrochemical transformation products are unambiguously
identified. In the future, LDI-MS will help to provide a deeper understanding of
interfacial processes in LIBs by using it in a multimodal approach with other sur-
face analysis methods to obtain complementary information.

INTRODUCTION

Over the past decade, the demand for emission-free transportation, particularly including battery electric
vehicles, has increased substantially, and consequently, the need for efficient battery technologies with
long lifetimes has grown.' Due to their high-energy densities and outstanding power characteristics,
lithium ion batteries (LIBs) have dominated the market so far.” However, LIBs with increased energy density
up to =750 Wh L~ at cell level are urgently needed to fulfill future needs of the automotive sector in terms
of longer driving ranges.® To achieve these ambitious goals, a wide range of materials for both positive and
negative electrodes is currently being studied.” With respect to the negative electrode, silicon (Si) is one of
the most promising materials for LIBs.> This is mainly due to the fact that the theoretical specific capacity
of Si (3579 mAh g’1, based on LiysSis) is almost ten times higher than that of the state-of-the-art material,
graphite (372 mAh g=").” Furthermore, Si is highly abundant in the earth’s crust and has a low-average
discharge potential (0.4 V vs. Li|Li*), resulting in high-achievable cell voltages.® Nevertheless, these advan-
tages come with large challenges that hinder Si from broad commercial implementation in LIBs, including
severe volume changes (=300%) during charge and discharge processes.” The continuous volume change
leads to a dynamic surface and hinders the formation of an effective solid electrolyte interphase (SEI), thus
continuously consumes the electrolyte and active lithium and, consequently, reduces the battery lifetime.”
One major strategy to address the challenges imposed by the use of Si electrodes is the formation of an
optimized SEl, which can be achieved by the use of film-forming electrolyte additives that support the for-

mation of a thin, flexible, and mechanically stable SE|./®

SEl film-forming electrolyte additives are supposed to exhibit a low-molecular mass and should be ideally
reductively decomposed in the first charge cycles at potentials higher than the electrolyte solvents.” Be-
sides the well-known additives vinylene carbonate (VC) and fluoroethylene carbonate (FEC),'® amino
acid derived N-carboxyanhydrides (N-CAs)'" were identified as being beneficial for the LIB cell perfor-
mance based on previous findings on O-carboxyanhydrides.'? This was attributed to the formation of
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Figure 1. Proposed reaction for electrochemical oligomerization of 3,4-dimethyloxazolidine-2,5-dione
(Ala-N-CA)""!

oligopeptides, which efficiently protect the surface of the negative electrode after reduction of the N-CA
additives at higher potentials than the electrolyte. 3,4-Dimethyloxazolidine-2,5-dione (Ala-N-CA), for
example, was found to be reduced at 1.10 V vs. Li|Li" whereas the baseline electrolyte was reduced at
0.70 V vs. Li|Li*."" Utilizing high-performance liquid chromatography (HPLC) hyphenated with mass spec-
trometry (MS), small oligo(N-CA) structures were determined in the electrolyte, and a mechanism of action
was proposed based on the detected species (see Figure 1).'" However, only structures that are soluble in
the carbonate electrolyte are accessible for detection using HPLC/MS, while species immobilized on the
electrode and incorporated in the SEl are not observed. X-ray photoelectron spectroscopy (XPS),"*'* Four-
ier-transform infrared (FTIR) spectroscopy'™'® and Raman spectroscopy”'18
niques commonly used to characterize the chemical composition of the SEI.'” However, a full characteriza-
tion of organic oligo- and polymers is not possible yet. This highlights the need for additional analytical
techniques to study relevant processes and support the targeted design of film-forming additives.”*°

are surface-sensitive tech-

MS is a powerful tool for studying the chemical composition of SEI.?' Specifically, secondary ion mass spec-
trometry (SIMS) is well established for material analysis, yielding information about the inorganic and
organic composition of surfaces.”” By scanning a sample with the primary ion beam, mass spectrometric
images with lateral resolutions down to 5 nm can be generated.'” As secondary ions are almost exclusively
formed from atoms and molecules in the uppermost surface layer, a uniquely high-depth resolution is
achieved. Thus, molecular depth profiling and three-dimensional imaging with sub-micron resolution
are possible.”"?* However, SIMS ionization generates not only quasi-molecular ions but also a large num-
ber of fragments, complicating the analysis of organic compounds with higher molecular mass, like oligo-
and polymers. This is especially observed when polymers are not only present in the uppermost surface
layer but are also entangled in the sample matrix.?” Thus, only small fragments of polymers are detected
during SIMS analysis of SEl layers in many studies, and the polymers are described based on these frag-
ments.”~?% A surface-sensitive ionization technique for mass spectrometry with a different ionization mech-
anism causing less fragmentation can therefore produce complementary information to SIMS.

Laser desorption/ionization (LDI) and matrix-assisted laser desorption/ionization (MALDI) are surface-sensitive
ionization techniques that could fill this gap and complement information on organic polymers obtained by
SIMS. Both LDl and MALDI are soft ionization techniques resulting in the formation of primarily singly charged,
intact ions that can be used to identify even large organic species.”” "> MALDI is widely applied in biochemistry
to study peptides,*® lipids,*”*° and metabolites.”' However, MALDI and LDl are also established as methods for
the characterization of polymers®’4~*
on electrode surfaces.”> Characterization of SEI components using MALDI has also been reported.*“° How-

and have recently been applied to study electrochemical side reactions

ever, most examples suffer from poor mass resolution and can, therefore, not differentiate easily between poly-
meric SEl components and other species with equidistant signal distributions, like matrix clusters.”’ Contrary to
MALDI, LDl performs desorption and ionization without the addition of a matrix and is, therefore, less prone to
error and more suited for routine analysis of electrode samples.

Isomeric species pose difficulties during MS analysis of complex samples as they are not differentiable
using their mass-to-charge ratio (m/z). An additional separation is required, which is typically achieved
by hyphenating chromatography and MS. However, chromatography is not applicable for surface analysis
using (MA)LDI-MS, as ionization occurs directly from the sample surface. Therefore, a separation technique
isrequired that can be implemented after ionization and before mass spectrometric detection. lon mobility
spectrometry (IMS) separates ions based on their mobility in the gas phase and, therefore, based on their
size-to-charge ratio.”” Trapped ion mobility spectrometry (TIMS) is a form of IMS, where ions are

2 iScience 26, 107517, September 15, 2023



iScience ¢? CellPress
OPEN ACCESS

A Pristine

309.2033
5.0 | 413.2657
3 v
540
=l
330 263.1255
220 555.1714
2 629.1897
<10 l
0.0 s IJJ. Leadd
100 300 500 700 900 1100 1300 1500
B Baseline
3.01 175.0339
5 263.1257
P \ 4
20 281.0157
Ay v
2z
2
g" 663.4444 923.6219 1183.7995
bl Y I
700 900 1100 1300 1500
C Ala-N-CA
151.1417 + n 85.0528
A R - N o e R =
3 T S | T I i
S | 2631257 | P :/NH)LNH Nevur|
o6 vl oo | i
< i i) 1 P — i )
Bos || Brorse R
5 175.03331 B
- 1 1 1 1
02 H b P
00 1 1
100 300 500 700 900 1100 1300 1500

mlz

Figure 2. LDI-MS spectra obtained by analysis of of electrode surfaces
(A) Pristine electrode.

(B) Electrode cycled with the baseline electrolyte (LP57).

(C) Electrode cycled with Ala-N-CA additive-containing electrolyte.

transported by a steady carrier gas flow and are trapped by an opposing electrical field gradient. By step-
wise decreasing the electrical field, the ions are serially eluted based on their mobility into an MS system
where they are detected.” The combination of (MA)LDI-TIMS-MS therefore allows the differentiation of
isomeric species directly from electrode surfaces.

Apart from the mass spectrometric characterization of a variety of different compounds, (MA)LDI-MS can
be applied as an imaging technique, depicting the lateral distribution of compounds on surfaces.”>
While (MA)LDI-MS imaging (MSI) is well established in biomedical research for the analysis of biological
tissues, the full potential of (MA)LDI-MSl is not yet employed in materials sciences. To the best of our know!-
edge, (MA)LDI-MSI of electrodes has only been reported once to visualize electrochemical side reactions
on electrodes used for organic electrosynthesis.”® When studying SEI composition, the additional informa-
tion obtained by MSI could further enhance the understanding of SEl formation processes and support the
identification of weak spots during electrode manufacturing and cell assembly. Hence, LDI(-TIMS)-MS has
great potential to support the understanding of SEl formation and rationalize electrolyte additive and inter-
phase design (including SEI and cathode electrolyte interphase (CEI*®) in general.

RESULTS AND DISCUSSION
LDI-MS allows detection of Ala-N-CA-derived oligomers in the SEI

The applicability of LDI-MS for the analysis of SEI components derived from film-forming electrolyte addi-
tives is shown by the comparison of mass spectra obtained by the analysis of different electrodes. Pristine
Si/graphite electrodes (Figure 2A) were compared to Si/graphite electrodes that were charged/discharged
for three cycles at 0.1C in Si/graphite || Li-metal cells employing either the baseline electrolyte (LP57)
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(Figure 2B), which contained LiPF, and the carbonate solvent but not the film-forming additive, or electro-
lyte with 2 wt.% of Ala-N-CA additive (Figure 2C, see Figure 1 for structure). Voltage profiles and Coulombic
efficiencies of the three formation cycles are shown in the supplemental information (see Figures $1.1-51.4)
for the cells with and without Ala-N-CA additive. To preserve the native state of the SEI, all cells were dis-
assembled and electrodes were mounted to sample holders in a glovebox without washing. Transfer to the
mass spectrometer was realized under argon atmosphere. All analyses of cycled electrodes were per-
formed in triplicate to ensure reproducibility. The data are conclusive for all electrodes of the triplicates
(data shown in Figures S2.1 and $2.2). To identify SEI components, the differences between pristine elec-
trodes, cycled electrodes, and cycled electrodes with Ala-N-CA have to be considered. Some signals, like
m/z263.1257, are observed on all analyzed electrodes and can therefore be considered to be derived from
the electrode material. This indicates that LDI-MS desorbs and ionizes not only the top layer of the SEIl but
also analyzes the complete SEI layer and some of the supporting electrode in a single experiment. The
desorption and ionization are likely induced by the absorption of the laser radiation by the dark surface
of the graphite active material in the supporting electrode. Thus, the obtained chemical information can
be assumed to represent the complete SEI. This ensures sufficient sensitivity of the method because
more material is desorbed than if only the top layer is analyzed. On the other hand, depth information is
lost and no statements about a possible layered structure of the SEl can be made using LDI-MS. Comparing
the pristine electrode to the electrode cycled with baseline electrolyte, many differences are observed. The
most intense species on cycled electrodes include m/z175.0339 and m/z281.0157. The assigned molecular
formulae are C4HgLiOsP* (Am/z = 2.0 ppm) and CeH12LiOgP2" (Am/z = 1.9 ppm), respectively. Both com-
pounds are, therefore, likely to be organophosphates, a class of compounds known to be formed as elec-
trolyte degradation products in LIBs.>’*® This identification is supported by the mass spectrometric frag-
mentation patterns (data shown in Figures S3.1 and S3.2), but an unambiguous structural elucidation of
these compounds is not possible due to the absence of distinct fragmentations characterizing the connec-
tivity of the ethylene moieties. Additionally, three equidistant signals with a mass difference of 260.1775 Da
(C17H240,) are detected in the high-mass region of the electrode cycled with baseline electrolyte, which
were not present on the pristine electrode. Similar signals are, however, also observed on uncycled elec-
trodes after contact to the electrolyte, indicating that the compounds are contained in the electrolyte and
are therefore not transformation products incorporated in the SEI (data shown in Figures S4.1 and $4.2).

To identify SEl components derived from Ala-N-CA, the results of the electrodes cycled with baseline elec-
trolyte and additive-containing electrolyte are compared. While some signals, like m/z 175.0339 and m/z
281.0157, are detected with and without additives, a large quantity of additional signals is detected with
Ala-N-CA. Several equidistant signals with a mass difference of 85.0528 Da (C4H;NO) are detected that
show a typical intensity distribution related to an oligo- or polymer. The mass difference between the sig-
nals fits the expected repeating unit of poly(Ala-N-CA) that was proposed previously (Figure 2)."" There-
fore, the incorporation of oligo(Ala-N-CA) in the SEI can be verified for the first time. Additionally, the
end groups of the oligomer are identified, and the proposed structure of the formed oligomer is depicted
in Figure 2C. It is likely that these electrochemically formed oligomers contribute greatly to the positive ef-
fect of Ala-N-CA on battery performance. On a more detailed look, several additional oligomer distribu-
tions are observed in the LDI-MS spectrum in Figure 2C. All of them share a common repeating unit
with a mass of 85.0528 Da but are shifted by a constant value to the most intense oligomer signal discussed
previously. The shifted oligomer signals are derived either from different ion species, like adducts with
different metal ions or from structural alterations in the end groups. These oligomers with altered end
groups are discussed in more detail in the supplemental information (see Figure S5.1) and can be attrib-
uted to hydrolytic oligomerization products and in-source fragments of larger oligomers. Hydrolytic olig-
omerization of Ala-N-CA was observed especially in electrodes that were immersed in Ala-N-CA-contain-
ing electrolyte for several days without cycling (see Figures S4.1 and S4.2).

TIMS and MS/MS expand the scope of LDI-MS by providing further structural information

The proposed structures based on the accurate masses should be validated by further experiments before
possible reaction mechanisms are suggested. Due to the ionization of intact oligomers using LDI, a com-
bination with further analysis techniques in the gas phase is possible. Therefore, TIMS was used to separate
the ions based on their size-to-charge ratio before MS detection. This allows a differentiation between
constitutional isomers which, in the case of oligomers, could be derived from different connectivity of
the monomers. Given the molecular structure of N-CAs,"" the formation of linear oligomers is likely. For
other film-forming additives like FEC, however, the formation of branched polymers has been observed
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Figure 3. Results from LDI-TIMS-MS and LDI-TIMS-MS/MS analysis of Ala-N-CA-derived oligomers

(A) Heatmap depicting the LDI-TIMS-MS data obtained from an electrode cycled with Ala-N-CA-containing electrolyte.
(B) Heatmap obtained by TIMS-bbCID analysis of the same electrode.

(C) Heatmap obtained by prm-PASEF analysis of electrochemically formed Ala-N-CA oligomers on the same electrode.
(D) Extracted ion mobilograms from LDI-TIMS-MS analysis of differently sized electrochemical Ala-N-CA oligomers.

(E) Fragment spectrum of the electrochemically formed heptamer (m/z 576.4051) extracted from the prm-PASEF dataset
within the inverse reduced mobility range 1.069-1.113V's cm 2.

(F) Fragmentation pattern of the electrochemically formed Ala-N-CA heptamer.

and will affect the physical properties of the SEl due to differences in flexibility of branched and linear oligo-
and polymers.®” Using LDI-TIMS-MS, branched and linear oligomers can be separated and the degree and
type of cross-linking identified. Figure 3A depicts the LDI-TIMS-MS results of the cycled Si/graphite elec-
trode using the Ala-N-CA-based electrolyte in a heatmap. By plotting the inverse reduced mobility (Ko™")
against the m/z, a trajectory is formed, as increasing m/z correlates with an increasing Ko~'. Only one
mobility-resolved signal is observed for each m/z of the electrochemical oligomer, and all oligomer signals
are separated in the mobility dimension. This can be observed more easily in the extracted ion mobilo-
grams of the oligomers, depicted in Figure 3D. As expected, no branched oligomers are formed during
electrochemical oligomerization, as they would likely be detected at different mobility values for the
same m/z.

To validate the proposed structures, tandem mass spectrometry (MS/MS) was used to perform fragmenta-
tion experiments. Using LDI quadrupole time-of-flight instruments, only one compound can be frag-
mented per analyzed LDI spot, prolonging the required time for data acquisition. Additional
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Table 1. Isolation width and fragmentation energy for prm-PASEF experiments based on the isolated mass-to-
charge ratio (m/2)

Type Mass (m/z) Width (m/z) Collision energy (eV)
1 base 290.0 2.0 30.0
2 base 450.0 2.0 42.0
8 base 630.0 2.0 55.0
4 base 850.0 2.0 70.0
5 base 1000.0 2.0 81.0
6 base 1200.0 2.0 95.0

implementation of the TIMS dimension, however, results in a temporal separation of ions with different mo-
bilities. Therefore, multiple ions per LDl spot can be fragmented as long as they differ in mobility, speeding
up the data acquisition.®” An untargeted approach for the utilization of this advantage is the combination
of TIMS with broad-band collision-induced dissociation (bbCID). Here, all ions eluting from the TIMS tunnel
are fragmented, and the fragments are subsequently detected via MS. The detected fragments can be as-
signed to their precursors as they share the same mobility value (i.e., are observed on a horizontal line in a
TIMS-bbCID heatmap).®” This fragmentation approach is advantageous if the compounds of interest are
unknown and as much information as possible should be acquired. However, multiple ions with similar mo-
bilities may overlap when complex samples are analyzed, resulting in an elaborate data evaluation that is
prone to misinterpretation. In the TIMS-bbCID heatmap of the cycled Ala-N-CA electrode (Figure 3B), such
overlap in mobility is observed for different metal adducts and oligomers with different end groups. Addi-
tionally, the choice of fragmentation energy can pose difficulties when a large m/zrange is analyzed. In the
case of the cycled Ala-N-CA electrode (Figure 3B), the chosen collision energy is only adequate for oligo-
mers of intermediate size (about m/z 600 — m/z 1000). Larger oligomers are not fragmented due to insuf-
ficient collision energy, while the energy is too high for smaller oligomers, fragmenting them to an extent
where little to no structural information is obtained.

A targeted approach for TIMS-based MS/MS experiments is parallel reaction monitoring-parallel accu-
mulation serial fragmentation (prm-PASEF). Here, signals are isolated using defined m/z and mobility
windows and are then fragmented with specific fragmentation energy for each compound.®’ So far,
the method has mainly been applied in HPLC/MS®? and the application to (MA)LDI-MS is a more recent
approach.?’ Figure 3C depicts the heatmap obtained by prm-PASEF analysis of the cycled Ala-N-CA
electrode with the electrochemical oligomers as target compounds. Isolation and fragmentation was
performed based on the parameters presented in Table 1. Compared to the TIMS-bbCID heatmap,
clean and easy to interpret spectra are obtained over the whole m/z and mobility range, proving prm-
PASEF to be the ideal fragmentation method for the characterization of oligomers. The orange rectangle
throughout Figures 3A-3C marks the signals derived from the electrochemically generated heptamer as
an example. In Figure 3E, the fragment spectrum of the heptamer is depicted in a two-dimensional
graph after extraction from the three-dimensional prm-PASEF data within the inverse reduced mobility
range 1.069-1.113 Vs. cm~2. This MS/MS spectrum is compared to the spectrum obtained by LDI-
TIMS-bbCID in the supplemental information (see Figure S6.1). Using the obtained data of all oligomers,
the proposed linear structure and the end groups are validated. Figure 3F shows the proposed fragmen-
tation pattern of the heptamer.

Based on the validated structure, a mechanism is proposed for the electrochemical oligomerization (Fig-
ure 4). After initial electrochemical reduction, the loss of CO and CO, leads to the formation of an amino
radical which can undergo radical addition to another N-CA molecule, forming an amide in the process.
Oligomerization and termination by reduction lead to the formation of the detected electrochemical
Ala-N-CA oligomer. During electrochemical decomposition of N-CAs, both CO, and CO were detected
as products via gas analysis,' which carbonate electrolytes are prone to in general as well,*® corroborating
the proposed mechanism. A further discussion of the mechanism can be found in the supplemental infor-
mation (see S7). Due to the knowledge obtained using LDI-TIMS-MS, the understanding of the underlying
process during oligomer formation was improved, and previously proposed mechanisms'' were refined.
The obtained information can help support targeted additive design by identifying and understanding
alterations to the SEI.
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Figure 4. Proposed mechanism for the electrochemically initiated oligomerization of Ala-N-CA

LDI-MSI generates images of oligomer distributions on electrode surfaces

In addition to the analysis of single spots on the electrode, the complete electrode surface was analyzed
using LDI-MSI with a lateral resolution of 50 um to ensure both sufficient spatial resolution and acceptable
analysis time. The samples were charged/discharged for three cycles at 0.1C in Si/graphite || Li-metal cells
before post-mortem analysis of the Si/graphite electrodes in triplicate. The resulting mass spectrometric
images of one exemplary electrode are depicted in Figure 5. Figures 5A-5D show the lateral distribution
of differently sized electrochemical oligomers derived from Ala-N-CA. The visualization shows a varying
degree of oligomerization in different areas of the electrode. The dimer depicted in Figure 5A is distributed
relatively homogenously, with slightly higher intensities in the center of the electrode. With increasing
chain length (Figures 5B-5D), a more localized signal, focused toward the edges of the electrode, is
observed. This trend is consistent in all triplicate samples (data shown in Figure S8.1). With regard to
this observation, it is likely that oligomerization is initiated on the edges of the electrode where the larger
oligomers are immediately immobilized and form an SEl layer. The solubility of small oligomers, especially
the dimer, in the electrolyte is expected to be better than that of larger oligomers. This is supported by the
fact that Ala-N-CA-derived dimers were detected in the electrolyte in previous studies.'’ Consequently,
small oligomers are more mobile and can diffuse before immobilization on the electrode surface, resulting
in their more homogeneous distribution. A detailed discussion of the observed lateral distributions is pro-
vided in the supplemental information (see S8 and Figure S8.2). In coin cells, inhomogeneity has also been
observed for the deposition of transition metals on negative electrodes which was attributed to different
mechanical pressure inside the coin cell.***° Similar effects could possibly also influence the oligomeriza-
tion of the studied Ala-N-CA additive and result in the observed oligomer distributions. However, further
studies are required to understand the underlying processes in detail. Future work should study the phe-
nomenon in pouch cell or cylindrical cell setup as these reflect commercially relevant battery applications
better.®® The cell geometry is expected to have a great impact on oligomer immobilization patterns and,
therefore, different oligomerization homogeneity might be observed. The use of pouch cells also allows to
easily study the influence of mechanical pressure.®* Additionally, further additives with different moieties
attached to the N-CA core structure should be investigated. Here, LDI-MS can be used to establish the ho-
mogeneity of the formed SEI as a new criterion during additive design.

Conclusion

In conclusion, LDI-MS greatly enhances the identification of SEl components and is a valuable addition to
the techniques already applied for SEl characterization. The obtained information is complementary to the
results from other analysis techniques, like XPS, FTIR, and Raman spectroscopy, and enables the chemical
characterization of crucial organic SEI components without the need for elaborate sample preparation.
Compared to other surface-sensitive MS techniques, like SIMS, LDI-MS provides valuable additional infor-
mation. The ionization of intact polymers and other organic molecules with a low amount of fragmentation
in LDI-MS provides the opportunity for the combination with further gas-phase analysis techniques like
TIMS and MS/MS. Thus, a deeper understanding of molecular structures can be obtained, including the
connectivity and the end groups of oligo- and polymers. As LDI-MS does not only analyze the top surface
layer, more material is desorbed and ionized, increasing the sensitivity of the method and ensuring that the
data represents the chemical information of the complete SEI layer. Compared to MALDI, LDI provides
several advantages when ionization of the analytes can be achieved without the application of a matrix.
Most commonly used MALDI matrices are acidic and can initiate chemical alterations of the SEI compo-
nents. Additionally, the matrix application process as well as possibly required washing steps can affect
the structural integrity of the SEI. This does not only affect the resulting identification of SEl components
but also their lateral distribution on the electrode and, therefore, the interpretation of mass spectrometric
images. Using LD, these effects are ruled out. Furthermore, LDI simplifies the data evaluation as matrix-
derived signals in the lower mass region, which may overlap with signals derived from SEI components
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Figure 5. Mass spectrometric images of a Si/graphite electrode after three cycles with Ala-N-CA-containing
electrolyte in Si/graphite || Li-metal cells

Images of (A) the electrochemically formed dimer (m/z 151.1419, green), (B) the electrochemically formed tetramer (m/z
321.2467, orange), (C) the electrochemically formed hexamer (m/z 491.3535, red) and (D) the electrochemically formed
nonamer (m/z 746.5114, turquoise).

in MALDI-MS spectra, are not observed in LDI-MS analyses. In addition, no matrix clusters with equal mass
spacing, which could be mistaken for oligo- and polymers, are observed in LDI. The use of TIMS as a further
separation technique extends the applicability of LDI-MS even further. The obtained information about the
mobility of the detected compounds helps with the differentiation of isomers like branched and linear olig-
omers. Moreover, the ion mobility separation enables faster characterization by using prm-PASEF for mass
spectrometric fragmentation. Finally, LDI-MS cannot only be used for characterization but also enables the
visualization of lateral distributions of different species on electrode surfaces using MSI. In this work, the
flexible applications of LDI(-TIMS)-MS, including fragmentation and imaging experiments, were demon-
strated for the analysis of the film-forming electrolyte additive Ala-N-CA. The derived oligomers were thor-
oughly characterized, and the lateral distribution on electrode surfaces was analyzed. The obtained data
enhanced the understanding of the positive effect of Ala-N-CA on the performance of LIBs shown in pre-
vious work'" and the underlying processes. LDI-MS complements established analysis methods for elec-
trode surfaces and addresses the gap for a soft ionization technique to study and characterize intact
organic SEl components with MS.

Limitations of the study

In this study, LDI-MS is discussed as a surface-sensitive technique for the characterization of organic SEI
components in LIBs. The method is limited by the ionization process for which the sample surface needs
to absorb radiation at the laser's emission wavelength. Additionally, the complex composition of the
analyzed SEl layer can cause ion suppression, possibly resulting in low-signal intensities for some com-
pound classes. For imaging applications, the lateral resolution of LDI-MS is limited to a spot size of several
micrometers and no-depth profiling is possible. In this work, LDI-MS was applied for ex situ characterization
of battery electrodes. Especially for a real-time observation of SEI formation and for an evaluation of
changes to the SEI during disassembly of LIBs, in situ and in operando analyses are beneficial. Thus, further
improvement of LDI-MS instrumentation is required to enable this next step.
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METHOD DETAILS
Preparation of 3,4-dimethyloxazolidine-2,5-dione

3,4-Dimethyloxazolidine-2,5-dione (Ala-N-CA) was synthesized following a modified literature procedure
from the according amino acid L-alanine.®” Detailed synthesis information is provided in the supplemental
information (see 59). NMR spectra of the synthesis intermediate N-(tert-butoxycarbonyl)-N-methylalanine
and the final product are provided in Figures $9.1-59.3.

Electrode preparation

The Si/graphite electrodes comprised 85 wt.% of active materials (a composite of =15 wt.% Si nanowires
and =85wt.% graphite) (BET surface area: 16 m? g_w; d50: 17.7 um, d90: 21.5 um) with a theoretical specific
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capacity of =713 mAh g™, 5 wt.% carbon black as conductive agent (Super C45, Imerys Graphite & Car-
bon, Paris, France), 7.7 wt.% sodium carboxymethyl cellulose (Na-CMC, Walocel CRT 2000 PPA12, Dow
Wolff Cellulosics, Bomlitz, Germany) and 2.3 wt.% polyacrylic acid (PAA, average M, 450,000, Sigma-
Aldrich Chemie GmbH, Steinheim, Germany) as binders. The paste was prepared with deionized water
as solvent. In the beginning of paste preparation, 1.2 wt.% of lithium hydroxide (LiOH, 98%, Fisher Chem-
ical, Schwerte, Germany) were dissolved with the binders in a planetary centrifugal mixer (20 min, 1700 rpm,
ARM-310CE, Thinky Corporation, Laguna Hills, USA). Afterwards, conductive agent, active material and de-
ionized water were added and homogenized again with the same rotation speed. The anode paste was
coated on smooth copper foil (20 um, Nippon Steel, Tokyo, Japan) with a blade gap of 50 um. After
pre-drying at 70°C in an atmospheric oven for 2 h, the sheets were dried in an oven at 90°C for 8 h under
reduced pressure. The electrodes were then punched out in discs with a diameter of 14 mm. The
average active mass loading of the anodes was =1.24 + 0.03 mg cm™2, resulting in an areal capacity
of =0.88 + 0.02 mAh cm™2 assuming a practical capacity of the Si/graphite composite of =700 mAh g~".

Cell assembly and electrochemical characterization

Electrochemical experiments were carried out in a glovebox (O/H,0 level < 0.5 ppm) in two-electrode
coin cells (CR2032, Hohsen Corporation, Osaka, Japan).“’ Si/graphite (@=14 mm) composite electrode
disks were used as a positive electrode and Li-metal as a negative electrode (@=15 mm, lithium metal
foil, 500 pm in thickness; battery grade; purity >99.9%, China Energy Lithium (CEL Co.), Tianjin, China).
As a separator, FS2190 separators (@=16 mm, 2 layers, Freudenberg, Weinheim, Germany) were soaked
in 100 uL of the electrolyte LP57 (1 m LiPF, in 3:7 w/w ethylene carbonate (EC)/ethyl methyl carbonate
(EMC), Solvionic, Toulouse, France) with and without 2 wt.% of Ala-N-CA. To ensure reproducibility,
the results of three cells per setup were used. Constant current followed by constant voltage (CCCV)
charge-discharge cycling was performed on a Maccor Series 4000 battery tester (Maccor, Inc., Leicester-
shire, United Kingdom) at 20°C. Cells were then cycled for three cycles at 0.1C (1C was defined as
700 mA g~ ") within the voltage range of 0.05 — 1.50 V for SEI formation.

Sample preparation

For post-mortem analysis, cells were disassembled in a glovebox (O,/H,O level < 0.5 ppm) in the discharged
state at 1.5V following the third cycle. It can be expected that the lithiation state of the negative electrode will
not affect the detected species to a great extent because the chemical composition of the SEl is expected to be
comparable in both states. However, a safe disassembly, analysis and disposal is easier to realize for delithiated
negative electrodes. The unwashed Si/graphite electrodes were attached to indium tin oxide (ITO)-coated
microscopic glass slides (70-100 Q sq~", Sigma-Aldrich Chemie GmbH, Steinheim, Germany) in the glovebox
using conductive double-sided adhesive carbon tape (Micro to Nano, Haarlem, The Netherlands). The sample
slides were mounted to the sample carrier in an Ar-flushed airlock and inserted in the evacuated (=2.6 mbar)
LDl source of the mass spectrometer for analysis without contact to ambient air.

Mass spectrometry

A timsTOF fleX (Bruker Daltonics GmbH & Co. KG, Bremen, Germany) mass spectrometer equipped with a
10 kHz frequency tripled Nd:YAG laser (355 nm) was used for LDI-MS, LDI-MSI, LDI-TIMS-MS and LDI-TIMS-
MS/MS analyses. Single LDI-MS, LDI-TIMS-MS and LDI-TIMS-MS/MS spectra were recorded by summation
of 17 spots distributed over the surface of the complete analyzed electrode. The mass spectrometer was
controlled by timsControl 3.0 (Bruker Daltonics GmbH & Co. KG, Bremen, Germany). For LDI-prm-PASEF ex-
periments, a prototype software version of timsControl 3.0 (Bruker Daltonics GmbH & Co. KG, Bremen, Ger-
many) was used. LDI-MSI experiments were performed using fleximaging 7.0 software and timsControl 3.1.
LDI-MS, LDI-TIMS-MS and LDI-TIMS-MS/MS data were evaluated using DataAnalysis 6.0 software (Bruker
Daltonics GmbH & Co. KG, Bremen, Germany). LDI-MSI data was visualized using SCIiLS Lab, Version 2023a
(Bruker Daltonics GmbH & Co. KG, Bremen, Germany). Intensities from LDI-MSI data were normalized using
root mean square normalization in SCIiLS Lab, which gave the best normalization results for this application.®®

LDl ionization was performed using the following parameters
LDI-MS, LDI-TIMS-MS, LDI-TIMS-MS/MS:

Laser application: MS dried droplet; power boost: 0.0%; smart beam: M5 defocus; beam scan: on; beam
scan size X: 25 um; beam scan size Y: 25 um; laser energy: 1%, laser frequency: 5000 Hz; shots per
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spot: 500; movement on sample spot: random, partial sample; 10 shots per raster spot; limit diameter to
2000 pum.

LDI-MSI:

Laser application: Imaging 50 um; power boost: 0.0%; smart beam: M5 small; beam scan: on; beam scan
size X: 11 um; beam scan size Y: 11 um; laser energy: 65%; laser frequency: 5000 Hz; shots per spot: 200;
movement on sample spot: off.

For LDI-MSI analyses, proper focus of the laser was ensured by adjusting the sample height using stainless
steel spacers and fine tuning the z-position using the instruments MALDI stage.

MS detection was performed using the following parameters

Mode: MALDI(+) (without application of matrix); m/z 50-1500; funnel 1 RF: 350.0 Vpp; funnel 2 RF: 350 Vpp;
isCID energy: 0.0 eV; multipole RF: 600.0 Vpp; deflection delta: 30 V; MALDI plate offset: 30 V quadrupole
ion energy: 10.0 eV; quadrupole low mass: m/z 40; collision energy: 10.0 eV; collision RF: 1000 Vpp; transfer
time: 80 ps; pre pulse storage: 10 ps.

TIMS-MS detection was performed using the following parameters

Mode: MALDI(+) (without application of matrix); m/z 50-1500; funnel 1 RF: 400.0 Vpp; funnel 2 RF: 350 Vpp;
isCID energy: 0.0 eV; multipole RF: 600.0 Vpp; deflection delta: 30 V; MALDI plate offset: 30 V quadrupole
ion energy: 10.0 eV; quadrupole low mass: m/z40; collision energy: 10.0 eV; collision RF: 1000 Vpp; transfer
time:70 ps; pre pulse storage: 5 ps.

TIMS mode: custom; 1/Kg start: 0.60 V's cm™2; 1/Ky end: 1.80 V. s cm™; ramp time 50.0 ms; accumulation
time: 40.0 ms; duty cycle: 80.0%; ramp rate: 17.84 Hz; offsets: A1: —20.0 V, A2: —160.0V, A3: 110.0 V, A4:
80.0V, A5: 0.0V, A6: 80.0V, collision cell in: 300.0 V.

TIMS-bbCID experiments were performed at a collision energy of 70 eV.

The collision energy and isolation width for prm-PASEF experiments were adjusted automatically based on
the isolated m/z according to Table 1.

The m/z and the mobility region for isolation of oligomers during prm-PASEF experiments were defined
based on LDI-TIMS-MS data.
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